MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 1

Devoir en temps limité n°3 - 3h

Calculatrices interdites

On veillera a présenter tres clairement sa copie : il faut rédiger les réponses et encadrer les résultats. Pour le code, il
doit étre indenté, on ne commence pas une fonction en bas de page et on utilise de la couleur pour les commentaires.

Le code doit étre commenté des qu’il dépasse les 5 lignes.

Les fonctions en C et en Ocaml doivent avoir le type précisé. Il est donc recommandé d’utiliser des fonctions auxi-
liaires en Ocaml.

1 Questions proches du cours

1. Rappeler les primitives qui caractérisent la structure de pile.

N

Rappeler une maniere d'implémenter une file vue dans le cours. Quelques phrases d’explication (et pourquoi
pas un dessin) sont attendues.

Comment implémenter un type permettant de représenter les arbres binaires en Ocaml?

Quelle est la formule récurrente définissant la hauteur d’'un arbre binaire ?

Ecrire en Ocaml une fonction récursive qui calcule la somme des éléments d’une liste.
Donner sa signature (son type).
Montrer la terminaison de votre fonction.

Montrer la correction de votre fonction.

© X 0w

Calculer la complexité de votre fonction en écrivant la formule de récurrence de sa complexité. Vous devriez
tomber sur un type de suite que vous connaissez tres bien.

2 Un peu de poissons

Dans cette partie, on s’intéresse & une pécheuse amateure péchant des poissons pour les vendre.
Un poisson est représenté en Ocaml par le type enregistrement suivant :

type poisson = {
espece : string;
poids : int; (*xpoids exprimé en grammesx)
valeur : int;

Y

Rappel : en Ocaml, pour accéder a un champ d’un type enregistrement, on écrit variable.champ. Ex : p.espece,
p3.valeur, ...

Par exemple on peut définir un saumon : let saumonl = {espece = "saumon"; poids = 5000; valeur = 60};;,
une truite : let truitel = {espece = "truite"; poids = 500; valeur = 25};; et wune carpe koi
let carpekoil = {espece = "carpe koi"; poids = 200; valeur = 200};;.

Le seau de de la pécheuse (l1a ou elle stocke les poissons) est représenté par un tableau de poissons type
poisson array. Le seau a une taille maximale de n, qui est déterminée par les quotas en vigueur (il ne faut pas
trop pécher). n est supposé fixe dans le reste de I’exercice.

Pour indiquer le fait que le seau n’est pas compléetement rempli, on mettra des faux-poissons
let faux_poisson = {espece = "faux"; poids = 0; valeur = 0}.

Par exemple pour n = 3, le seau de la pécheuse peut étre [ | saumonl; faux_poisson;faux_poisson|]. Le seau contient
alors un saumon et c’est tout.

On garantira que les vrais poissons sont tous rangés au début du tableau, ainsi dés qu’on voit un faux
poisson, on est assurés que le reste du tableau ne contient que des faux poissons.

10. Ecrire une fonction compte_poissons : poisson array -> int qui compte combien de vrais poissons la pécheuse
a capturé.

11. Ecrire une fonction compte_argent : poisson array -> int qui compte combien d’argent la pécheuse va gagner
avec son seau de poissons.

En plus d’étre limitée par les quotas, la pécheuse est également limitée par sa capacité a transporter le seau. On
fixe donc un poids x tel que, si le seau fait strictement plus que x grammes, la pécheuse ne peut plus le porter.

On suppose écrite une fonction compte_poids : poisson array -> int quicompte le poids total du seau (c’est presque
la méme fonction que compte_argent).



MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 2

12. Ecrire une fonction peut_porter : poisson array -> int -> bool qui prend en entrée le seau et x et renvoie
vrai si la pécheuse peut porter le seau et faux sinon.

Si la pécheuse ne peut plus porter son seau, il faut qu’elle retire un poisson pour que le seau pése moins lourd.
Cependant la pécheuse aimerait gagner autant d’argent que possible, donc elle va essayer de retirer le poisson qui
vaut le moins cher.

Par exemple si le seau contient le saumon (5kg), la truite (500g) et la carpe koi (200g) précedemment définis et que
x vaut 5.5kg, alors le seau pese 5.7 kg et retirer n'importe quel poisson permet de repasser en-dessous de la limite.
On va donc choisir celui qui vaut le moins cher : la truite.

Pour généraliser ceci on va suivre les étapes suivants :

m Créer une liste / vide.
m Pour chaque poisson du seau, identifier si le retirer permet de repasser en-dessous du poids limite. Si oui :
m Créer une nouvelle liste I’ en ajoutant le poisson a [, en I'insérant de telle sorte & ce que / reste
rangée par valeur de poisson croissante.

m Le premier élément de la liste finale est alors le moins cher dont le retrait permet de respecter la limite
de poids.

13. Ecrire une fonction insere : poisson list -> poisson -> poisson list qui prend en entrée la liste [ triée
selon les valeurs croissantes et un poisson p et range le poisson p dans la liste [/ a sa place, c’est a dire en
préservant le tri par valeurs.

Par exemple si on veut rajouter un poisson valant 35 euros dans la liste suivante (pour clarifier on écrit que
la valeur du poisson et pas son poids ni son nom) :

s NN N / TN,
{ 10€ VM s0e” 1" 56" | " 2506 |
//\‘) . //\1,\\ N\ , /,\J
L N \. S \J — \J N \J
On obtient :
B N A e N ). ,//\\ T N //\ . \\\ A
{10~ ( 356 [ s0€ " < 95€ { 250€"
ANV BN BN aXE RNaN

14. Compléter la fonction quoi_retirer : poisson array -> int -> string suivante qui prend en entrée le seau
et x et renvoie le nom du poisson retiré.
S’il n’est pas possible de ramener le poids du seau en dessous de x en retirant un seul poisson, on fera une
erreur.

let quoi_retirer seau x =
let nb_poissons = ... in
let poids_total . in
let 1 = ref [] in (*llste des poissons qu'on pourrait retirerx)

for i = 0 to ... do (*pour chaque poissonx)
if ... then ...
done;

(xConclure sur quel poisson on va retirerx)
if ... then failwith "il faudrait retirer plusieurs poissons"
else ...;;

3 Un peu de chainage

Dans cette partie on va étudier en C une structure chainée pour former une grille.

Dans une grille chaque case peut avoir jusqu’a 4 voisins (au nord, au sud, a I'est et a I'ouest). On va donc écrire un
type de maillon qui possede 4 pointeurs pointant vers les voisins de la case. Une case contiendra aussi une valeur
entieére.

struct Case {

int valeur;

struct Casex nord;
struct Casex sud;
struct Casex ouest;
struct Casex est;

typedef struct Case case;



MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 3

valeur nord sud ouest est
1 6 2
1 |NULL NULL, e—F+—»
T Fléche
5 3 8 vers la
. case avec
Fleche le 6
vers la
4 ] 0 case avec
le 5
Ficure 1 — Une grille Ficurk 2 — Représentation mémoire de la case (0,0)

Si une case n’a pas de voisine dans une des directions, on mettra le pointeur NULL dans le champ correspondant.
Dans I'exemple de la Figure 2, la case (0,0) n’a pas de voisine au nord, donc son champ nord vaut NULL.

Dans la suite on confondra la case et le pointeur qui pointe dessus. Ainsi une variable casex représente une case.

On rappelle que si c est de type casex, alors pour accéder a sa voisine nord on écrit c->nord (qui est de type casex)
et pour accéder a sa valeur on écrit c->valeur (qui est de type int).

15. Ecrire une fonction bool est_bord(casex c) qui détermine si la case c est sur un bord de la grille. Indication :
les cases sur le bord n’ont jamais 4 voisines.

16. Ecrire une fonction casex nouvelle_case(int v, casex n, casex 0, casex s, casex e) qui crée une nouvelle
case dont la valeur est v et qui pointe vers les cases indiquées (n= voisine nord, etc...).

Une grille sera représentée par son coin en nord-ouest (aussi appelé case NO ou case (0,0)) et on supposera qu'une
grille est toujours rectangulaire. On notera ses dimensions n et m. On écrit le type grille suivant :

struct Grille {
casex coinNO;

}
typedef struct Grille grille;

Variable g Coin NO
> > 1 (> 6 || 2
\ 4 A \
5 || 3 || 8
v \J v
4 |=»| 9 |-+ O
\/ \ v
7 |=»| 1 || 3

Ficure 3 — Exemple de grille* g

17. On suppose qu’on dispose du pointeur g de la Figure 3. Quelle instruction permet d’obtenir la valeur de la
case (0,1)? De la case (1,2)? Du coin sud-est? La réponse attendue est de la forme g->machin->bidule->....

18. Ecrire une fonction int nb_colonnes(grillex g) qui calcule le nombre de colonnes de g. Indication : il faut
compter combien de fois on peut aller a I'est depuis la case NO.

19. Ecrire une fonction int nb_lignes(grillex g) qui calcule le nombre de lignes de g.
20. Quelle est la complexité de la fonction précédente ?

21. Ecrire une fonction int valeur_case(grillex g, int i, int j) qui renvoie la valeur de la case (i, j). On utili-
sera assert pour faire une erreur si la case n’existe pas.



MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 4

22. Quelle est la complexité de la fonction précédente en fonction de i et j?
23. Ecrire une fonction int somme_grille(grillex g) qui effectue la somme des éléments de la grille.
24. Quelle est 1a complexité de la fonction précédente ?

4 Tri avec des files

Le but de cet exercice est de trier une liste d’entiers strictement positifs sans répétitions L = [s1;Sg;...;S,] avec
n € N en utilisant un réseau de % files en paralléle.

Dans toute la suite, méme si on omet de le préciser, les s; considérées sont des entiers strictement positifs et tous
différents.

1. Réseau de files

Un réseau de £ files en parallele est composé de % + 2 files :

m Une file donnée
m £ files intermédiaires numérotées Fy, ..., F}.
m Une file résultat

=

4_
»
4_
v Téte Queue
F» de file de file
o z y <
v .
Résultat | ] | Donnée
-«— b

F«

44— Sens de lafile

Ficure 4 — Illustration d’un réseau a k files

Initialement tous les éléments de la liste sont mis dans la file donnée avec s; en téte de file et s, en queue de file.
Ensuite, on déplace les entiers dans le réseau avec un déplacement a la fois et un entier a la fois.

Il y a deux types de déplacement possible :

m les déplacements d’entrée consistent a défiler la file donnée et enfiler 'élément s obtenu dans une des
files F; avec i € [|1, &|] choisi par le programmeur.

Un tel déplacement est noté In(i).

m les déplacements de sortie consistent a défiler une des files F;, i € [|1, %|] et enfiler 'élément s obtenu
dans la file résultat.
Un tel déplacement est noté Out (7).

25. Dans cette question on considére £ = 2. Dessiner I’état final du réseau si on commence avec la liste L =
[3;1;0;2] dans la file donnée et qu’'on effectue les déplacements In(1),In(1),In(2),Out(2),0ut(1).
On représentera les éléments restants dans les 4 files du réseau.



MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 5

On va programmer le réseau en Ocaml. Pour représenter les déplacements on disposera du type
type deplacement : In of int | Out of int.

On représentera le réseau a k files en parallele par un tableau de % + 2 files. La file donnée sera dans la case 0 du
tableau. La file F; avec i € [|1, k|] sera dans la case i. La file résultat sera dans la case & + 1 du tableau.

Les files seront implémentées avec le module Queue. Les primitives sont rappelées en annexe. Un réseau sera donc
de type int Queue.t array (pour certaines questions, obtenir un 'a Queue.t array est acceptable).

26. Ecrire une fonction cree_reseau_vide : int -> int Queue.t array qui prend en entrée k et crée un réseau qui
pour le moment ne contient aucun élément.

27. Ecrire une fonction charge_liste : int list -> int Queue.t array -> unit quiprend en entrée une liste d’é1é-
ments et un réseau et met les éléments dans la file donnée, dans le bon ordre.

28. Ecrire une fonction execute_sequence : deplacement list -> int Queue.t array -> unit qui prend en entrée
une liste de déplacements et un réseau et effectue les déplacements demandés (In ou Out)

2. Tride listes

On va utiliser le réseau pour trier une liste en effectuant uniquement des déplacements de la forme In et Out.

Le tri se termine lorsque tous les s; se retrouvent dans la file résultat, triés dans I'ordre croissant de la téte de la
file vers la queue de la file.

On appelle scénario de tri une séquence de déplacements qui amene tous les éléments dans la file résultat rangés
dans l'ordre croissant.

Par exemple, si on consideére & = 2 et n = 3, le scénario [In(1),In(2), Out(2),0ut(1),In(1),0ut(1)] trie la liste [9;
3; 20] avec 2 files intermédiaires.

Remarque : on dira qu’une file est croissante (resp. décroissante) si les éléments qu’elle contient, considérés dans

Pordre de leur arrivée en commencant par le plus ancien (le prochain a sortir), sont rangés dans l'ordre croissant
(resp. décroissant).

29. En utilisant £ = 1 files, donner un scénario qui permet de trier la liste [1;2].
30. En utilisant £ = 3 files, donner un scénario qui permet de trier la liste [3;5;2;7;1;8;91.

31. Combien de déplacements contient un scénario de tri? Justifier.

32. Justifier que pour tout scénario de tri T', on peut construire un scénario de tri 7’ qui utilise les mémes dépla-
cements mais ou tous les In sont faits avant les Out.

Dans la suite on supposera que tous les scénarios de tri effectuent les In avant les Out.

33. Montrez qu’a chaque étape d’un scénario de tri, chacune des files intermédiaires (les F;) est soit vide, soit triée
dans l'ordre croissant.

34. Déduisez-en que, dans un scénario de tri, deux éléments s; et s; tels que i < j mais s; > s; ne peuvent pas
aller dans la méme file intermédiaire. Montrez que si L contient une sous-séquence décroissante de longueur
m, avec m > 2, il faut au moins m files en paralléle pour trier L.

. < im < n.Cest tres similaire a 'idée d’une suite extraite, appliquée dans le cadre d’une "suite finie" (la
liste).
35. En exploitant les propriétés remarquées dans les questions précédentes, donner un algorithme en pseudo-code
permettant de trouver une scénario de tri pour une liste L quelconque.

Il est interdit d’utiliser d’autres structures files et piles dans ’algorithme. Il est permis d’utiliser des variables
numériques, des listes et des tableaux si besoin.

Remarque : une sous-séquence de [s1;...;s,] est une liste de m < n éléments [s;,,...s;, ] telle que 1 < iy <

5 Annexe

Module Queue

® Queue.create : unit -> 'a Queue.t qui crée une file vide

® Queue.is_empty : 'a Queue.t -> bool qui teste si une file est vide

® Queue.push : 'a -> 'a Queue.t -> unit qui ajoute un élément

® Queue.pop : 'a Queue.t -> 'a qui retire et renvoie I'élément le plus ancien

® Queue.peek : 'a Queue.t -> 'a quirenvoie sans retirer I'élément le plus ancien



	Questions proches du cours
	Un peu de poissons
	Un peu de chainage
	Tri avec des files
	Réseau de files
	Tri de listes

	Annexe

